
transsys User Manual

Jan T. Kim

kim@inb.uni-luebeck.de

Institute for Neuro- und Bioinformatics

Seelandstr. 1a

D-23569 Lübeck, Germany

December 9, 2013

1 Introduction

1.1 Motivation

During recent years, gene regulation has become a major focus in the molecu-

lar biosciences. Many important biological processes, such as cell differentiation,

morphogenesis, diseases and responses to drug administration, have been found to

be determined by networks of regulatory genes at the molecular level. However,

there is a lack of generic and theoretical understanding of regulatory networks.

Progress in this area would benefit from a concise and generic representation of

regulatory networks, rendering them accessible to theoretical, statistical and mod-

elling approaches. transsys, a contraction of "transcription factor system", is

intended to be a contribution towards this goal.

1.2 Concept

Regulatory gene networks are constituted by genes encoding transcription factors

and the encoded transcription factors which regulate the expression (and hence the

activity) of the regulatory genes as well as the expression of other genes (which

are sometimes referred to as "phenotypic realizator genes"). transsys attempts

1

to capture these two essential components and their interrelations. At the core,

transsys is a formal language for specifying the core entities constituting reg-

ulatory networks as described above. The transsys sofware package provides

a set of tools for visualizing and analyzing networks specified in the transsys

language.

While a concise representation of a regulatory network may already be of

some value for managing this type of biological information, a network alone is

of limited use as a model of a biological system. Regulatory networks receive

input from the biological system in which they are embeded. These input signals

can, depending on the level of resolution or abstraction of the particular model, be

thought of as other regulatory networks, terminals of intracellular signal cascades,

intercellular signals, or environmental signals. Moreover, there are feedback loops

between the regulatory network and the pattern formation and morphogenesis pro-

cesses which unfolds in response to activities within the network.

The major goal of transsys is to capture the integration of regulatory net-

works within such biological contexts, as these contexts can be assumed to quali-

tatively determine the dynamics and phenomena emerging within a network, and

moreover, the biological sense made by regulatory networks can only be captured

by integratively (holistically?) modelling a network along with its biological con-

text. To achieve this goal, transsys is designed as a component which concep-

tually can be embedded within a more extensive modelling context. As a first case

study, transsys has been combined with the Lindenmayer system formalism.

The resulting model, labelled L-transsys, is described in the last part of this

report.

As the modelling level of transsys is the level of regulatory networks, sur-

rounding levels of biological organization are not represented in much detail, e.g.

because transsys does not address the metabolic level, no attempt is made to

enforce energy or mass conservation. The rationale for this is the observation

that transcription factor synthesis and decay accounts for a minute fraction of the

entire cellular metabolism.

2 The transsys Model

Modelling with transsys involves a two-stage process: Firstly, a transsys

model has to be defined. In a transsys definition, the core elements of the

regulatory network are described by a set of numerical properties. For factors,

these properties are the decay rate and the diffusibility. The properties of genes

2

are divided in a promoter section, specifying which factors have activating or

repressing effects on the expression of the gene, and a product section, specifying

which factor is encoded by the gene.

Once a transsys is specified, instances can be created. The information

stored in a transsys instance is an array holding the concentrations of the fac-

tors of the network. The factor and gene properties specify a procedure for updat-

ing these concentrations, i.e. for computing the factor concentrations in the next

time step given the concentrations in the current time step. In OO parlance, the

factor concentrations may be thought of as member variables of a transsys in-

stance, while the factor and gene properties specify and parameterize the method

for simulating the internal processes taking place within the instance during one

time step.

2.1 Factor Model

The properties of a factor in transsys are a decay rate and a diffusion rate. The

decay rate is a value between 0 and 1 that specifies how much of the total amount

of a factor decays during a time step. The diffusion rate specifies how large a

fraction of a factor is distributed among the neighbouring transsys instances.

Evidently, the existence of at least two instances that are coupled in some way is

necessary in order to get any reasonable effect from diffusion. The details of this

coupling cannot be deduced from the transsys alone, the system relies on the

context model to provide multiple instances and a connection graph of some kind.

As a simple example, these can be provided by a CA.

2.2 Gene Model

The gene model used in transsys comprises two parts, a regulatory block and

a product block. The regulatory block describes how the gene’s activity is af-

fected by the various factors. The product block simply determines which factor

is synthesized as the gene’s product.

3 Program Overview

The transsys package currently comprises these programs:

• transcheck: Parse transsys code and write parsed code into output.

This is used during parser developments, to ensure that all information from

3

the code is read in as intended. However, this program may also be of some

use for locating errors in transsys code.

• transexpr Generate a time series factor concentrations. Output file for-

mat is suitable for the gnuplot program.

• transpsGenerate PostScript graphics of regulatory networks specified as

transsys programs

• transscatter Produce scatter plots by starting off a transsys in-

stance with random initial factor concentrations and performing a given

number of updates. Intended to check networks for robustness and to search

and characterize attractors.

• ltrcheck Perform some derivations of an L-transsys program and

write each L-transsys string to output. Used for exploring, checking

and debugging L-transsys programs.

• ltransps Produce graphical 2D rendition of L-transsys run in PostScript

• ltransgl Produce 3D rendition of L-transsys run using OpenGL

4 Examples

4.1 Writing a transsys Program

4.1.1 The Beginning

A transsys program consists of the keyword transsys, followed by a name

and a body which is enclosed by curly braces and contains the actual components

forming a regulatory network. As a start, and to set up a framework, we’ll start

with an empty system, i.e. with one that does not contain any components:

transsys example

{

}

4

4.1.2 Adding a Factor

Transcription factors are specified by factor statements in the body. So, let’s

start filling our emtpy system by adding a factor:

transsys example

{

factor F1

{

}

}

As you see, a factor specification has the same structure as a transsys specifi-

cation: A keyword (factor), a name (F1) and a block enclosed by curly braces,

which is empty here but will be filled soon.

4.1.3 Adding a Gene

Our transcription factor F1 won’t be much fun unless we also provide a gene

encoding it. Perhaps not surprisingly, genes are also specified by a keyword,

namely gene, followed by a name and a block:

transsys example

{

factor F1

{

}

gene g1

{

promoter

{

constitutive: 1.0;

}

product

{

default: F1;

}

}

}

5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

[F
1]

time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

[F
1]

time

Figure 1: Temporal dynamics of factor F1 with a decay rate of 1 (left) and a decay

rate of 0.5 (right).

4.1.4 Trying it out

Our example transsys program is not (yet) anything interesting as a biological

model or a complex system. But we can use some transsys programs on it for

demonstration purposes. You can create a time course of the concentration of F1

with the command

% transexpr example.tra example.plt

The resulting file can be plotted using gnuplot:

% gnuplot

gnuplot> plot ’example.plt’ using 1:2 with lines

This plot, shown in Fig. 1, will show you that the concentration of F1 is 1 at all

time steps excepting the initial one. This may not seem quite right to you: If

1.0 is the amount of factor synthesized from g1 in each time step, should it not

accumulate over time? The answer is that it could, if we had specified a decay rate.

Let’s use this occasion to introduce the transcheck program for revealing the

default factor properties:

% transcheck example.tra

gives you the an output of our exampletranssys program in which the F1 block

reads

factor F1

{

6

decay: 1;

diffusibility: 1;

}

As we see, each factor has two properties, a decay rate and a diffusion rate. If no

specification is given in a factor’s block, transsys assumes the parameter to be

1. A decay rate of 1 means that all factor molecules (i.e. 100% of them) decay

within one time step. This explains why the factor concentration does not exceed

1.

4.1.5 Specifying a Decay Rate

It would not make any sense if the decay rate could not be changed, and quite

obviously, this is done as seen in the transcheck output shown above. So, let’s

specify the decay rate explicitly:

factor F1

{

decay: 0.5;

}

If you run transexpr on the transsys program with the factor definition

modified this way, you’ll see that F1 indeed accumulates over time, approaching

a limit of 2 asymptotically, see Fig. 1.

4.1.6 Controlling a Gene’s Expression

In the example transsys program developed so far, the gene g1 is constitutively

expressed. Now, it’s time to take a central step towards modelling regulatory

networks by introducing another gene controlled by F1. We do this by adding the

following to our transsys program:

factor F2 { decay: 1; }

gene g2

{

promoter

{

F1: activate(2, 5);

}

7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

co
nc

en
tr

at
io

n

time

[F1]
[F2]

Figure 2: Dynamics of concentration of F1 and F2 in a transsys program where

F1 regulates expression of the gene encoding F2.

product

{

default: F2;

}

}

You can check the resulting dynamics in factor concentrations by running:

% transexpr example.tra example.plt

% gnuplot

gnuplot> plot ’example.plt’ using 1:2 with lines

gnuplot> replot ’example.plt’ using 1:3 with lines

The results are also shown in Fig. 2. The dynamics of F1 are as in the preceding

versions of the example. To understand the dynamics of F2, notice first that the

decay rate was set explicitly to 1. Thus, the total amount of F2 in a time step is

equal to the amount synthesized in that time step.

Regulation of g2 by F1 is modelled by the activate statement. The fac-

tor activating the gene is mentioned before the keyword activate. Quantita-

tively, activation is computed according to the Michaelis-Menten-equation. The

two parameters of activate, which are denoted by aspecand amax, are analo-

gous to the Michaelis-Menten parameter KM and vmax, respectively. Thus, as

the concentration of F1 approaches 2, the rate of synthesis of F2 approaches
amax·cF1

aspec+cF1
= 5·2

2+2
= 2.5.

Fig. 2 shows that synthesis of F2 starts one time step after F1 begins to accu-

mulate. This is due to the implementation of transsys: Factor synthesized in a

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

co
nc

en
tr

at
io

n

time

[F1]
[F2]

cycler

agene

A

rgene

R

Figure 3: Oscillatory dynamics in a regulatory network of two genes (left) and a

graph representation of the regulatory network (right).

time step does not participate in gene regulation in that time step, effects set in in

the subsequent time step.

4.1.7 Getting Advanced: Autoregulation

Having seen how one gene can be regulated by a factor encoded by another gene,

the stage is now ready for presenting a transsys program that deserves being

called a regulatory network:

transsys cycler

{

factor A { decay: 0.1; }

factor R { decay: 0.1; }

gene agene

{

promoter

{

constitutive: 0.01;

A: activate(0.01, 1.0);

R: repress(0.1, 1.0);

}

product

{

default: A;

}

9

}

gene rgene

{

promoter

{

A: activate(1.0, 10.0);

R: repress(1.0, 1.0);

}

product

{

default: R;

}

}

}

Fig. 3 shows the temporal dynamics of the two factors A, which activates both

genes and R, which represses both genes. Initially, agene is slightly activated due

to the constitutive statement in the promoter. Accumulation of A amplifies

activation of agene, but also results in activation of rgene, which encodes R. The

parameters of activation and repression are chosen such that the repression effects

of R eventually lead to a temporary shutdown of expression of both genes. After

that, decay of R finally allows constitutive expression of agene to set in again,

which starts the next oscillation.

4.1.8 Visualizing the Regulatory Network

The transsys program introduced above is surely simple enough to be under-

standable by just reading the code. Larger networks, however, demand larger

and more complex transsys programs. The program transps can be used

to graphically render the regulatory network structures encoded in a transsys

program:

% transps example.tra example.ps

For the simple autoregulatory network shown above, the corresponding graph is

shown in Fig. 3.

10

4.2 Writing a L-transsys Program

4.2.1 The Beginning

L-transsys uses the same principles as transsys, in particular, the concept

of named blocks was applied in L-transsys whereever it seemed reasonable.

Thus, an empty L-transsys looks like this:

lsys example

{

}

4.2.2 Defining a Symbols

Symbols (from which strings are assembled) are the basic unit of L-systems. In

L-transsys symbols have to be defined before they can be used. So, let’s

define a symbol:

lsys example

{

symbol shoot_piece;

}

4.2.3 Defining a Rule

Rules are the centerpiece of traditional L-systems, and in L-transsys, they are

mechanism which links realization of morphogenetic processes to gene expres-

sion. But we’ll postpone introduction of transsys programs with L-transsys

a little in order to first demonstrate the basics of rule definition. A simple example

rule reads:

lsys example

{

symbol shoot_piece;

rule doubleshoot

{

shoot_piece --> shoot_piece shoot_piece

}

}

11

As you might guess (at least, if you have some experience with L-systems) this

rule replaces each occurrence of a shoot_piece symbol with a string of two

shoot_piece symbols. Repeated application yields a string of shoot_piece

symbols which exponentially grows in length.

4.2.4 Trying it out

To actually see the rapidly growing string, it is necessary to provide the system

with an initial string to start with. This initial string is called the axiom in L-

system terminology, therefore, L-transsys uses a keyword called axiom for

this purpose:

lsys example

{

symbol shoot_piece;

axiom shoot_piece;

rule doubleshoot

{

shoot_piece --> shoot_piece shoot_piece

}

}

This L-transsys program is certainly minimalistic, and it’s not original at all as

it doesn’t use anything transsys specific, but let’s use it to see L-transsys

at work nonetheless:

% ltrcheck -n 5 example.trl

This command prints out the result of the first 5 derivations of the axiom. The

output is not really interesting, consisting just of lots of shoot_pieces, so it’s

not shown here.

4.2.5 Adding Graphics

The output not shown above is not just boring because the L-transsys program

comprises just one symbol. String dumps are useful for debugging, but the real

strength of L-systems can only be seen if the string is rendered graphically. Now,

since L-transsys lets us define arbitrary symbols, it cannot know how what

12

graphics we want to associate with our symbols. Thus, we end up having to

specify that too:

graphics

{

shoot_piece

{

move(0.5);

color(0.7, 0.7, 0.7);

cylinder(0.1, 1.0);

move(0.5);

}

}

By adding this piece to the L-transsys program developed so far, we ob-

tain a minimalistic system which can be used for 3D rendering with the program

ltransgl:

% ltransgl example.trl

Running this program brings up an OpenGL window in which a grey cylinder is

displayed. The object can be moved along the X axis by dragging with the left

mouse button. Translation along the Y and Z axes are possible by pressing and

holding down the shift or control key, respectively. The object can also be rotated

around all axes by dragging with the right mouse button, again using the shift

or control key to select the Y or Z axis. Pressing n computes shows the next

derivation step, p shows the preceding step. The Home and End keys move

to the initial step (i.e. the axiom) and the last step computed so far, respectively.

4.2.6 Changing Direction

Shoot pieces forming a straight chain seem somewhat unflexible. Of course,

L-transsys allows changes in orientation. There are three axes around which

one can rotate in 3D, and rotations are done with the graphics functions turn(),

roll() and bank(). Let’s demonstrate the turn() function with an example:

lsys example

{

symbol shoot_piece;

symbol left;

13

Figure 4: Demo of turn() graphics command.

symbol right;

axiom shoot_piece;

rule wiggle

{

shoot_piece --> left shoot_piece right shoot_piece

}

graphics

{

shoot_piece

{

move(0.5);

color(0.7, 0.7, 0.7);

cylinder(0.1, 1.0);

move(0.5);

}

left { turn(-20); }

right { turn(20); }

}

}

In this example, we have introduced two new symbols, left and right, which

are associated with turns to the left and to the right, respectively. The rule was also

modified to actually use the new symbols. The graphical result is shown in Fig. 4.

14

Figure 5: A branched structure generated with L-transsys.

You may be surprised about the irregular wiggling structure; it is due to the fact

that left and right symbols occur in multiple repeats, sometimes cancelling

each other out. If you’re puzzled, the ltrcheck program might help you.

4.2.7 Push and Pop Symbols

Drawing branched structures requires functions for saving the current position

and orientation, along with other information collecively called a state, and for

returning to the saved state at some later time. These operations are called pushing

(the state) and popping (the state), respectively. In L-transsys, pushing and

popping are graphical functions, so in order to use these operations, we firstly

have to define symbols for them and secondly, we have to associate them with the

corresponding graphics primitives. Here’s a code fragment that does all that:

symbol [;

symbol];

graphics

{

[{ push(); }

] { pop(); }

}

rule branch

{

shoot_piece --> [left shoot_piece] [right shoot_piece]

15

shoot_piece shoot_piece

}

}

This code shows that the square brackets, [and], can be used as symbols. The

intention is to use them as push and pop symbols, as shown here. In addition to

introducing the new symbols and their graphics, the rule has again been modified

to show off the new stuff. Fig. 5 shows that the system indeed yields a branched

structure.

4.2.8 Integrating transsys

transsys is integrated into L-transsys by extending the concept of para-

metric L-systems: Symbols can be defined to have a transsys instance associ-

ated with them, as in

symbol meristem(cycler);

As you see, attaching a transsys instance to a symbol is really easy, the difficult

part is to write the transsys program in the first place. For our example, we’ll

use the cycler program listed in section 4.1.7.

4.2.9 Handling transsys Instances in Rules

Having defined that meristem symbols should have a cycler instance at-

tached, we now need a way to access what’s going on in the cycler instance and

to use this information for controlling the growth process modelled by L-transsys

rules. Here’s the code:

rule grow

{

meristem(t) : t.A > 0.91 -->

[left meristem(transsys t:)]

[right meristem(transsys t:)]

shoot_piece meristem(transsys t:)

}

This example introduces several new constructs. Firstly, we see that a transsys

instance associated with a symbol is given a local name within the lefthand side

16

Figure 6: Another branched structure generated with L-transsys. In this case,

branching is controlled by gene activity within transsys instances in the meris-

tems which are graphically rendered as green spheres.

of a rule. Here, the transsys instance associated with the meristem symbol

is labelled t.

Secondly, we see a new element in this rule: A condition which must be ful-

filled in order to activate the rule. In our example, the rule is only activated if

the concentration of factor A in the transsys instance labelled t is greater than

0.91.

Thirdly, the transsys instance is also used for creating new symbols on

the righthand side of a rule. All meristem symbols specified there are qual-

ified with (transsys t:). This means that the factor concentration values

from the transsys instance labelled t are copied into the transsys instances

associated with the newly created symbols.

4.2.10 A Plant Branching Under the Control of Genes

Having introduced the handling of transsys instances in rules, we are finally

ready to write an L-transsys program in which branching is controlled by

gene activity within meristems. We just have to add the graphics instructions for

rendering meristem symbols:

meristem

{

move(0.2);

color(0.0, 1.0, 0.0);

sphere(0.2);

17

move(0.2);

}

A graphical display of the virtual plant obtained with this L-transsys program

is shown in Fig. 6.

4.2.11 Visualizing Factor Concentrations

In the L-transsys program which we’ve developed now, factor concentrations

are causal for branching. So, it would be nice if we could somehow see the oscil-

lations in concentrations of factor A as our plant develops. This is easily feasible,

as factor concentrations are accessible within graphics definitions. All we need is

to modify the meristem graphics:

meristem

{

move(0.2);

color(0.3 + A / 0.9 * 0.7, 0.3 + R / 20.0 * 0.7, 0.3);

sphere(0.2);

move(0.2);

}

This modification does not alter the morphology of the plant. But instead of

showing all meristems as spheres with a bright green colour, the spheres are now

coloured according to the concentrations of the two factors. This is best seen in

an animation. Such an animation can be seen by running ltransgl: Firstly, let

ltransgl do a few hundred derivations. Here, the fact that pressing N per-

forms 50 derivations at once is handy. Once you’ve done that, press Home to get

back to the axiom. Now press > to see an animation running through all steps.

A reverse animation can be shown by pressing < .

5 Formal transsys Specification

5.1 Constitutents of a transsys program: Lexical Analysis

The transsys language consists of tokens (lexical elements), much as many

common computer languages, such as C. The token classes are:

• Comment: All characters between a # (hash character) and the end of a line

are considered a comment and are ignored by transsys.

18

• Number: All numbers in transsys are real valued and are written in the

usual notation, e.g. 12, 3.14, 47.11e22 etc.

• Identifier: An identifier is a string in which the first character is an alphabet-

ical character and the subsequent characters are alphanumerical characters.

The underscore _ is considered an alphabetical character. Identifiers are

case sensitive. Their main purpose in transsys is denoting genes and

factors.

• Keyword: The keywords reserved by the core transsys language are

activate, constitutive, decay, default, diffusibility,

factor, gauss, gene, product, promoter, random, repress,

transsys.

Additionally, the following keywords are reserved by L-transsys: axiom,

bank, box, color, cylinder, graphics, lsys, move, pop, push,

roll, rule, sphere, symbol, turn.

Reserved keywords may only be used in the ways defined by the language

specifications, i.e. they cannot be used as identifiers or for other purposes.

Please see section 5.7 below for additional info and advice.

• Operator: transsys uses the following operators, which should look fa-

miliar to those programming in C or C++: <=, >=, ==, !=, &&, x, +, -, *,

/, !, <, >, =.

Additionally,L-transsys reserves and uses the production operator -->.

• Punctuation and Structure: Curly braces {, } are used to separate a transsys

specification into modular blocks. Parentheses (and) are used for explic-

itly specifying precedence in arithmetic and logical expressions. Individual

statements are separated by semicolons ;, assignment lists in L-transsys

are separated by commas.

5.2 Overall Structure

A transsys is specified by the keyword transsys, followed by a name and

a body, consisting of transsys elements enclosed in curly braces. transsys

elements are factor definitions and gene definitions.

An empty transsys, i.e. one with no factors or genes, is formally allowed

but it may be of limited use.

19

transsys -> "transsys" identifier "{" transsys_element_list "}"

transsys_element_list -> /* empty */

transsys_element_list -> transsys_element_list factor_definition

transsys_element_list -> transsys_element_list gene_definition

5.3 Factor Definition

A factor in transsys is specified by the keyword factor, followed by a name

and a body. Within the body, the factor’s decay rate and diffusion rate are speci-

fied. These specifications may be omitted, in which case the default value of 0 is

assumed for both parameters.
Formally, the grammar allows multiple specifications of both parameters; in

the current parser implementation, the last specification will become effective.
However, relying on this "feature" is strongly discouraged.

factor_definition -> "factor" identifier "{" factordef_components "}"

factordef_components -> /* empty */

factordef_components -> factordef_components factordef_component

factordef_component -> "decay" ":" expr ";"

factordef_component -> "diffusibility" ":" expr ";"

5.4 Gene Definition

A gene in transsys is specified by the keyword gene, followed by a name
and a body. The contents of the body are subdivided into a promoter component
and a product component. The promoter component specifies the level of the
gene’s expression activity as a function of the factor concentrations. The product
component specifies which factor is encoded by the gene (i.e. which factor is
synthesized upon the gene’s expression). ene’s activation).

gene_definition -> "gene" identifier "{" promoter_component product_component "}"

5.4.1 Promoter Definition

The promoter component specifies computation of the level of the gene’s expres-

sion as a function of the factor concentrations. Currently, there are three types of

statements possible in the promoter component. Each statement is evaluated to

compute a contribution of activation (or repression). The activation contributed

by statement i is denoted by ai.

constitutive is the most generic type, this statement specifies an expres-

sion determining an amount of activation:

ai = result of evaluating expression (1)

20

activate and repress statements are both preceded by a factor name f , and

both have a list of two expressions as arguments. The arguments determine the

specificity, denoted by aspec, and the maximal rate of activation, denoted by amax.

The actual amount of activation is calculated according to the Michaelis-Menten-

equation:

ai =
amaxcf

aspec + cf
(2)

Repression is calculated by the same formula with the sign reversed:

ai = −

amaxcf

aspec + cf
(3)

Both parameters aspec and amax are specified by expressions, which allows mod-

elling of modulation of activation by protein-protein interactions. The amount of

product p synthesized through expression of gene g in a time step is given by

∆gcp =

{

atotal :=
∑

i ai if atotal > 0

0 otherwise
(4)

promoter_component -> "promoter" "{" promoter_statements "}"

promoter_statements -> promoter_statement

promoter_statements -> promoter_statements promoter_statement

promoter_statement -> "constitutive" ":" expr ";"

promoter_statement -> factor_combination ":" "activate" "(" expr "," expr ")" ";"

promoter_statement -> factor_combination ":" "repress" "(" expr "," expr ")" ";"

factor_combination -> identifier

factor_combination -> factor_combination "+" identifier

5.4.2 Gene Product Definition

product_component -> "product" "{" product_statements "}"

product_statements -> "default" ":" identifier ";"

5.5 Expressions

expr -> expr LOGICAL_OR and_expr

expr -> and_expr

and_expr -> and_expr LOGICAL_AND not_expr

and_expr -> not_expr

not_expr -> ’!’ not_expr

not_expr -> cmp_expr

cmp_expr -> cmp_expr ’<’ arithmetic_expr

21

cmp_expr -> cmp_expr ’>’ arithmetic_expr

cmp_expr -> cmp_expr LOWER_EQUAL arithmetic_expr

cmp_expr -> cmp_expr GREATER_EQUAL arithmetic_expr

cmp_expr -> cmp_expr EQUAL arithmetic_expr

cmp_expr -> cmp_expr UNEQUAL arithmetic_expr

cmp_expr -> arithmetic_expr

arithmetic_expr -> arithmetic_expr ’+’ term

arithmetic_expr -> arithmetic_expr ’-’ term

arithmetic_expr -> term

term -> term ’*’ value

term -> term ’/’ value

term -> value

value -> REALVALUE

value -> ’(’ expr ’)’

value -> RANDOM ’(’ expr ’,’ expr ’)’

value -> GAUSS ’(’ expr ’,’ expr ’)’

value -> IDENTIFIER

value -> IDENTIFIER ’.’ IDENTIFIER

5.6 L-transsys

lsys -> LSYS_DEF IDENTIFIER @1 ’{’ lsys_element_list ’}’

lsys_element_list -> lsys_element

lsys_element_list -> lsys_element_list lsys_element

lsys_element -> symbol_definition

lsys_element -> axiom_definition

lsys_element -> rule_definition

lsys_element -> graphics_definition

symbol_definition -> SYMBOL_DEF IDENTIFIER ’;’

symbol_definition -> SYMBOL_DEF IDENTIFIER ’(’ IDENTIFIER ’)’ ’;’

symbol_definition -> SYMBOL_DEF ’[’ ’;’

symbol_definition -> SYMBOL_DEF ’[’ ’(’ IDENTIFIER ’)’ ’;’

symbol_definition -> SYMBOL_DEF ’]’ ’;’

symbol_definition -> SYMBOL_DEF ’]’ ’(’ IDENTIFIER ’)’ ’;’

axiom_definition -> AXIOM_DEF production_element_string ’;’

rule_definition -> RULE_DEF IDENTIFIER ’{’ rule_components ’}’

rule_components -> rule_lhs ’:’ expr ARROW rule_rhs

rule_components -> rule_lhs ARROW rule_rhs

rule_lhs -> lhs_element_string

lhs_element_string -> /* empty */

lhs_element_string -> lhs_element_string lhs_element

lhs_element -> IDENTIFIER

lhs_element -> IDENTIFIER ’(’ IDENTIFIER ’)’

rule_rhs -> production_element_string

production_element_string -> /* empty */

22

production_element_string -> production_element_string production_element

production_element -> IDENTIFIER

production_element -> IDENTIFIER ’(’ transsys_initializer ’)’

production_element -> ’[’

production_element -> ’]’

transsys_initializer -> source_transsys_specifier assignment_list

transsys_initializer -> assignment_list

source_transsys_specifier -> TRANSSYS_DEF IDENTIFIER ’:’

assignment_list -> /* empty */

assignment_list -> assignment

assignment_list -> assignment_list ’,’ assignment

assignment -> IDENTIFIER ’=’ expr

graphics_definition -> GRAPHICS_DEF ’{’ symgraph_list ’}’

symgraph_list -> /* empty */

symgraph_list -> symgraph_list symgraph

symgraph -> IDENTIFIER ’{’ graphcmd_list ’}’

symgraph -> ’[’ ’{’ graphcmd_list ’}’

symgraph -> ’]’ ’{’ graphcmd_list ’}’

graphcmd_list -> /* empty */

graphcmd_list -> graphcmd_list graphcmd

graphcmd -> MOVE ’(’ expr ’)’ ’;’

graphcmd -> PUSH ’(’ ’)’ ’;’

graphcmd -> POP ’(’ ’)’ ’;’

graphcmd -> TURN ’(’ expr ’)’ ’;’

graphcmd -> ROLL ’(’ expr ’)’ ’;’

graphcmd -> BANK ’(’ expr ’)’ ’;’

graphcmd -> SPHERE ’(’ expr ’)’ ’;’

graphcmd -> CYLINDER ’(’ expr ’,’ expr ’)’ ’;’

graphcmd -> BOX ’(’ expr ’,’ expr ’,’ expr ’)’ ’;’

graphcmd -> COLOR ’(’ expr ’,’ expr ’,’ expr ’)’ ’;’

5.7 Future Development Plans

5.7.1 Additional Keywords

It is a notorious problem that the set of keywords of a computer language increases

as the language evolves, and that the introduction of new keywords may result in

old code becoming malfunctional and "illegal".

Extending transsys, particularly by integration of additional modelling

methods, is definitely intended. However, it is not clear which keywords will

be introduced in this process. Therefore, at this time, only some rather general de-

sign principles can be given. These may provide some guidance for the cautiously

minded:

23

• No keywords containing any capital letters will be introduced.

• No keywords beginning with an underscore will be introduced, and intro-

duction of keywords containing underscores is unlikely.

• Introduction of keywords containing numbers is also unlikely

• Most likely candidates for keywords are on the one hand words that are

used as keywords in other computer languages, an on the other hand terms

for generic biological structures. Examples for the latter category are cell,

tissue, organ, enhancer, chromosome etc. It is recommended to

avoid such terms in order to minimize troubles due to future development

of transsys.

24

