
Notes on the xpipe Package

Jan T. Kim, jtk@cmp.uea.ac.uk

August 11, 2009

Abstract

Unnamed pipes allow exchange of data between processes. Differently from commu-
nication via (temporary) files or named pipes, an unnamed pipe cannot be interfered with
by other processes. The pipe function provided by the R base package provides pipes for
writing xor reading, but it is not possible to obtain file connections to both the input and the
output handles of a pipe.

The objective of the xpipe (for “extended pipe” or “pipe through an external process”)
package is to provide a more complete access to unnamed pipes. This is an initial version,
much needs to be done. Comments and suggestions are very welcome.

1 Introduction: The Problem and the Solution
Suppose you have a program foo that reads its input from the standard input and writes its
output to the standard output, and implements some algorithm or facility that is not provided
by R or any of its packages. Let us further assume that in your R program, you have a variable
foo.data, holding the data to be processed by foo, and you want to assign the result to
foo.result.

You could write the contents of foo.data into some temporary input file foo.in, call
foo with the standard output directed to a temporary output file foo.out, and finally read the
result from that output file:

write(foo.data, file = "foo.in"));
system("foo < foo.in > foo.out");
foo.result <- readLines("foo.out");

The trouble with this is that you cannot prevent that something happens to the temporary files
before (or while) they are processed in the intended manner. If two R processes are running this
sequence of calls in the same directory, both will end up with garbled results, and as the number
of times you run this sequence increases, the probability that such a clash occurs asymptotically
approaches one.

1



Of course, there are clever measures you can take to prevent this from happening, such as
file locking and facilities for generating unique file names, but all these are really workarounds
that incur unnecessary overhead. The solution that avoids such problems once and for all is
to use an unnamed pipe, known just to the processes involved, and therefore safe from any
interference by unrelated other processes. R provides a pipe function (in the base package)
for starting a subprocess, but that only allows to either writing to the subprocess’ standard input
or reading form the subprocess’ standard output — not both.

Part of the reason for this is that one R process cannot do both, as blocking may occur and
cause the flow of execution to stall. The blocking problem is traditionally solved by forking off
a child process which feeds input into the (external) subprocess and terminates when finished
doing so. The main R process then reads the output provided by the subprocess. The xpipe
function implements this technique.

2 Examples
This example is rather contrived and does not have any practical use, but it depends only on bc
which should be available on any reasonable Unix variant.

Use bc to achieve better precision than R’s numeric type:
> options(width = 20)
> x <- "11111111111111111111"
> x <- as.numeric(x)
> y1 <- x + x
> y2 <- x + x + 1
> dy <- y2 - y1
> sprintf("imprecise result: dy = %g", dy)

[1] "imprecise result: dy = 0"

> library(xpipe)
> x <- "11111111111111111111"
> y1 <- xpipe("bc", sprintf("%s + %s", x, x))
> y2 <- xpipe("bc", sprintf("%s + %s + 1", x, x))
> dy <- xpipe("bc", sprintf("%s - %s", y2, y1))
> sprintf("precise result: dy = %s", dy)

[1] "precise result: dy = 1"

A more compact and efficient variant (all done in one bc process, using bc variables):

> library(xpipe)
> x <- "11111111111111111111"
> bclines <- sprintf("y1 = %s + %s", x, x)
> bclines[2] <- sprintf("y2 = %s + %s + 1", x, x)
> bclines[3] <- "dy = y2 - y1"
> bclines[4] <- "dy"
> dy <- xpipe("bc", bclines)
> sprintf("precise result: dy = %s", dy)

[1] "precise result: dy = 1"

2



3 Future Plans
• The xpipe function could be made more flexible and useful by

– add a verbose argument, for debugging and explanatory / exploratory purposes.

– capability of returning output obtained from the subprocess in numerical rather than
in character type. A data.frame would be the next logical target.

– allowing the input data to be provided by a function rather than by a character
vector. This would greatly improve efficiency in cases where large amounts of in-
put that can easily be generated are involved (pointless but paradigmatic examples
include all natural numbers 1 ≥ n ≥ 108, this many random numbers etc.etc.).

• Arrange for error flagging if there is no pipe / fork support provided by the host platform.

• As an improved mechanism for detecting xpipe support, provide a xpipe.capabilities
function, modelled after capabilities of the base package.

• In the future, I’d like to see full pipe and fork support move into the mainstream of
R, much as fifo is there today. Availability of pipes and fork could be reflected by
capabilities, so R programmers would have a reliable and convenient way of telling
whether that’s available.

4 Current Problems
The most natural way to interface to an xpipe would seem to be providing two connec-
tions, one for writing and one for reading. Unfortunately, the current code structure does
not make this possible for a package; it would be necessary to modify the R source code
(src/main/connection.c). This source file contains a static array Connections in
which all connections are stored, and there does not seem to be an interface for registering
connections set up by a package like xpipe.

Unfortunately, this makes it rather difficult to read the output of the external process through
R’s standard data import functions, such as read.table. As a cumbersome but generic
solution, it is possible to open an anonymous file, write the lines obtained from xpipe into
that using write, and read the data back from there using read.table, scan, or any other
function.

Appendix
This appendix runs tests (it will do in the future) and thus reflects the amount of functionality
provided by xpipe on the host on which Sweave was run.

3



A From R to R
This depends only on R, thus minimising dependencies ;-)

> library(xpipe)
> set.seed(1)
> num.testvalues <- 1000
> x <- as.character(runif(num.testvalues))
> y <- xpipe("R --vanilla --slave", sprintf("set.seed(1); write(as.character(runif(%d)), file = \"\");",
+ as.integer(num.testvalues)))
> which(x != y)

integer(0)

> y[x != y]

character(0)

4


	Introduction: The Problem and the Solution
	Examples
	Future Plans
	Current Problems
	From R to R

